contestada

3. Mr. Tatto (m = 110 kg) runs down the hall with a velocity of 6 m/s. If Mr. Ludwig stops him, determine Mr. Tattos change in momentum. ​

Respuesta :

Answer:

The change in momentum is

[tex] - 600kg.m/s[/tex]

Explanation:

Greetings!!!

To determine Mr. Tatto's change in momentum, we use the formula:

Change in momentum = Final momentum - Initial momentum

Given:

- Mass of Mr. Tatto (m) = 110 kg

- Initial velocity of Mr. Tatto (u) = 6 m/s

- Final velocity of Mr. Tatto (v) = 0 m/s (since he stops)

First, calculate the initial momentum (P_initial) using the formula:

Initial momentum = Mass × Initial velocity

= m × u

Plugging in the values:

Initial momentum = 110 kg × 6 m/s

= 660 kg·m/s

Now, calculate the final momentum (P_final) using the same formula:

Final momentum = Mass × Final velocity

= m × v

Plugging in the values:

Final momentum = 110 kg × 0 m/s

= 0 kg·m/s

Now, find the change in momentum:

Change in momentum = Final momentum - Initial momentum

= P_final - P_initial

= 0 kg·m/s - 660 kg·m/s

= -660 kg·m/s

So, Mr. Tatto's change in momentum is -660 kg·m/s. The negative sign indicates that the direction of the change in momentum is opposite to the initial momentum, which means he's stopped, hence the reversal in momentum.