Respuesta :

Answer:

Solving the similar triangles, we get x=10.6, y=66

Step-by-step explanation:

The triangles are similar.

We need to find the values of x and y

If the triangles are similar, the ratio of corresponding sides is equal.

So, we can write:

[tex]\frac{32}{x}=\frac{30}{10}=\frac{y}{22}[/tex]

Now, we can solve to find value of x and y

First solving to find value of x:

[tex]\frac{32}{x}=\frac{30}{10}\\Cross \:multiply\\32\times 10=30x\\320=30x\\x=\frac{320}{30}\\x=10.6[/tex]

So, we get x = 10.6

Now, finding value of y:

[tex]\frac{30}{10}=\frac{y}{22}\\Cross\:Multiply:\\30*22=10y\\660=10y\\y=\frac{660}{10}\\y=66[/tex]

So, we get y = 66

Solving the similar triangles, we get x=10.6, y=66