Use the​ power-reducing formulas to rewrite the expression as an equivalent expression that does not contain powers of trigonometric functions greater than 1.
16 sin4x
16sin4x = _____

Respuesta :

Answer:

[tex]6-8cos2x+2cos4x[/tex]

Step-by-step explanation:

We are given that

[tex]16sin^4 x[/tex]

We can write the given expression as

[tex]16(sin^2x \times sin^2 x)[/tex]

[tex]16(\frac{1-cos2x}{2})(\frac{1-cos2x}{2})[/tex]

By using the formula

[tex]sin^2\theta=\frac{1-cos2\theta}{2}[/tex]

[tex]4(1-cos2x)^2[/tex]

[tex]4(1-2cos2x+cos^2(2x)[/tex]

Using the identity

[tex](a-b)^2=a^2+b^2-2ab[/tex]

[tex]4(1-2cos2x+\frac{1+cos4x}{2})[/tex]

[tex]4-8cos2x+2+2cos4x[/tex]

[tex]6-8cos2x+2cos4x[/tex]

This is required expression.